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Abstract

Agreement on the membership of a group of processes in a distributed system is a basic problem that arises

in a wide range of applications. Such groups occur when a set of processes co-operate to perform some

task, share memory, monitor one another, subdivide a computation, and so forth. In this paper we discuss

the Group Membership Problem as it relates to failure detection in asynchronous, distributed systems. We

present a rigorous, formal specification for group membership under this interpretation. We then present a

solution for this problem that improves upon previous work.

Ifeywords Asynchronous computation; Fault detection; Fault tolerance; Distributed Consensus; Member-

ship list management.



1 Introduction

Agreement on the membership of a group of processes in a distributed system is a basic problem that arises

in a wide range of applications. Such groups occur when a set of processes co-operate to perform some task,

share memory, monitor one another, subdivide a computation, and so forth. These problems are seen in

data base contexts [2], real-time settings [7], and distributed control applications [14] [3]. A process group's

membership may change when its processes fail (they are removed), recover (re-instated), when new processes

join, or when members voluntarily leave. Some form of consensus on group membership is necessary, for

without it a server that respects its specification may nonetheless behave inconsistently with some other

server that has simply seen different group members. Cristian [8], specified and solved a similar problem for

synchronous settings. This paper explores the problem in an asynchronous environment.

In our model of computation, a set of processes communicate through a completely connected network

of reliable, FIFO channels. Processes only fail by crashing, and once failed, do not recover. We model

process recovery by treating 'recovered' processes as new and different process instances. The system is fully

asynchronous in that message delivery times are unbounded and there is no global clock.

Accurate detection of crashes (and recoveries) is impossible in an asynchronous environment. At best,

a process can be suspected of having failed, but no process can ever be known to have crashed because real

crashes are indistinguishable from communication delays. We therefore focus on what it means for a process

to be a member of the group of operational processes in an asynchronous system. We model the presumed

failure of a process by removing it from the group. The impossibility of detecting crashes also affects the

meaning of correct process, for in the traditional literature a correct process is one that has not failed. In

our setting, it is one that has not been perceived to have failed [. Our goal is to make this mechanism mimic

a fail-stop failure detector.

Our approach and solution differ from previous work on group membership for asynchronous systems.

In contrast to Moser, et.al. [16], we do not assume the existence of an underlying fault-tolerant atomic

broadcast. Our solution is also cheaper than theirs, and the one proposed by Mishra, et.al. [15]. The

protocol in Birman and Joseph [4] blocks during periods when failures and recoveries occur continuously.

Our solution is fully 'online' : we can process a constant flow of requests to both remove and add processes.

which is exactly what occurs in actual systems. Bruso's solution [5] is symmetric (i.e. all processes behave

identically) and requires an order of magnitude more messages in all situations. Other, less directly related

protocols include [61_ and [91.

In Section 2 we discuss perceived failures in more detail and formally define the Group Membership

Problem. We discuss why, despite its similarity to Distributed Consensus [10], GMP is solvable. In Sections 3

and 4 we construct our solution, initially considering failures but not recoveries. Section 5 proves the

reconfiguration algorithm correct and provides crucial lemmas for correctness of the complete algorithm.

which is shown in Section 6. We also discuss the protocol's complexity and minimality. In Section 7 we

modify the original algorithm to allow processes to join the group. This yields a fully 'online' protocol in

the sense that we can now process a constant flow of requests to both exclude and join processes, which is

what occurs in actual systems. We conclude by discussing the implications of our particular specification.

and directions for future work.

[ If no other process attempts to interact with one that has, in fact, crashed, it will never be perceived to have failed

2 Marzullo [I 3] has shown that the G MP protocol in [6] needs extension if failures or recoveries occur during the second phase

of their "ring-reformation" protocol.



2 Perceived Failures

The notionof perceivedfailureiscrucialto GMP inasynchronous environments. In thissectionwe introduce

our model and discussperceived failuresindetail.We alsodiscusshow they affectGMP solutionsand tile

meaning of correct process.

2.1 The System Model

Our system is of a set of n processes, Proc, communicating through complete set of reliable (lossless and

non-generating), FIFO channels. There are no bounds on message transmission times, and no global clocks.

A process history, for a process p EProc, is a sequence of events including send events, receive events and

specific internal events that arise in our algorithm. General internal computation is not modeled. We use

send(p,q,m) to denote the sending of message m by process p to process q, and recv(p, q,m) to denote q's

reception of m from p. A history for p is denoted

=stortp, d" k> 0

where the e_ are events, and star_ is a unique, internal event. Denote by hp[i] the i th event of hp, and by

lhp[ the number of events of hp.

A system run is an n-tuple of process histories, one for each p_ EProc. We say an event, e, is in run

r =(hpL,hp_ ..... hp,), ife is an event in some process history, and denote this by e E r.

Causality between events (denoted -- and read happens before) in a given run is defined in the usual

manner after Lamport [12]. In our model, a consistent cut, c, is a system run closed under ---, ; that is, if

e -- e' and e' E c, then e E c.

I I I

Definition Given two process histories, hp and hp, we say hp is a prefiz of hp if and only if Ihpt<_lhp] and
• s . s I r

V0 < i _<[hp[.(hp[_]=hp[_]). hp is a strict prefiz of hp if and only if [hp]<thp[ and hp is a prefix of hp.

i # t

Definition Given two consistent cuts, c =(hi,h2 ..... hn) and c' =(hx, h2, .... h,_), in the same system

run,

r

1. c < d if and only if each hp is a prefix of hp;
s

2. c << c' if and only if each hp is a strict prefix of hp.

We model the crash failure of process p by a final event quitp a. In this way, once p has crashed, it causally

influences no other process. The proposition down(p) holds along a consistent cut c exactly when quitvE c.

We define u_p) =_ -,down(p). Finally, we define HP(c)C_Pry¢,flo be=a!! p_roce'_ses p for which up(p) holds

along consistent cut e, and DOIWA/'(c) to be Proc-//P(c). Asynchrony prevents processes from ever knowiug

the exact compo6ition of/4"P(e) (except along the initial cut, co = (startt ..... start,_)).

Perceived process failures may be triggered by a variety of phenomena. Complicating any algorithm for

detecting failures is the possibility that a transient event could prevent a live process from sending or receiving

messages, giving rise to spurious failure 'detections'. In such a situation one process might detect an apparent

failure when another does not, simply by virtue of observing during a period of degraded performance. Any'

SWhether a process actually executes this event is irrelevant (a process may be in an infinite loop); quitp is a convenience in

modelling a process that permanently ce_es communication with all others.



global characterization of a process as operational or failed will therefore require a distributed consensus

protocol 4. For brevity, we discuss only process failures, but there are analogous statements for 'recoveries'.

To model this, we treat failure detections as a form of input: the event faultyp(q) marks the point in

p's execution when it decides that q is faulty. The proposition 5 faultyp(q) is true along a consistent cut, c,

exactly when faultyp(q)E c. The possible sources of an event faultyp(q) are the following:

F1 : (Observation) For whatever reason, process p determines that q has

crashed. We are not concerned with the details of the mechanism used

here, but for liveness, we do assume that it occurs in finite time after a real

crash.

For example, p may be expecting a message from q and does not receive it within a pre-determined

"time-out' period (Note that we are using 'time' only as an (approximate) tool for detecting possible crash

failures. Nowhere do we use time to reason about system state.).

F2 : (Gossip) Process p receives a message m from some process, r, such

that faultyr(q) -- send(r,p,m) and, when p executes recv(r,p,m), it does

not believe q faulty.

In both cases, p executes the event faultyp(q). Let O,<>, [:=1,and _ (henceforth, at some future point,

always in the past, and some point in the past) be tense logic modalities (See [18] for rigorous definitions).

We also require :

Sl : (Isolation) Once a processes, p, believes another, q, to be faulty, p

never receives messages from q again.

faultyp(q) _ O--,(recv(q,p,m))

Our protocol is such that some time after recording faultyl,(q), p will execute the event removep(q). We

define the membership view for operational process p along cut c =(hi,h2 ..... hn), (denoted Memb(p. c)).

to be the set p obtains by sequentially modifying its initial membership list accdrding to the removep(q)

events in hp. Trivially, we require p EMemb(p, c). Memb(p, c) is undefined if down(p) holds along c. Because

hp is linear,'it makes sense to talk about the z th version of p's local view, which we denote Memb_. The

reader should notice that we distinguish between the events faultyt,(q ) and removep(q). This is because we

will require processes to coordinate updates to their local views. A process's initial, local decision about

another's faultiness must be propagated to all cohorts before removal can take place.

We extend local views to system views as follows.

Definition Given a consistent cut c and a set of processes, S C_ Proc :

$
Sys(c, S) = Memb(p, c)

undefined

S n U'P(c) = 0

Vp, q e S n H'P(c).(Memb(p, c) = Memb(q, c))

otherwise

We say that S is the set of processes that determine the system view.

4 This is nat Distributed Consensus as defined in [10].

5 [n general, we write events in italics, and propositions in slanted type.



2.2 Relating Sys(c,S) to Failure Detection

As the definition of Sys(c, S) is crucial to our Group Membership Problem, it is worthwhile discussing some

subtle points. Intuitively, Sys(e, S) models tlle set of processes that the members of S believe operational

along consist cut c. During periods of quiescence, we will want Sys(c, S) = S. During periods of activity, we

will be particularly interested in how the sets S and Sys(e, S) relate.

Assume Sys(c, S) is defined and suppose q is not a member of the group whose local views determine the

system view; i.e.,q E -S. Then Memb(q, c) need not be identical to other processes' local views for the system

view to exist. Our concern lies with q taking an external action that reflects an incorrect composition of the

system view. If q is truly failed this is impossible. So consider q E (S'nhc'P(c)). Two cases are of particular

interest.

I.

.

q E ('S N liP(c) n Sys(c, S)). In words, q is functioning, but is a member of neither the system view

nor the group determining the system view. Given our intuition that Sys(c, S) is the set of processes

mutually believing each other to be operational, communication should remain within this group.

However, as q is operational along c, it may try to send messages to those in Sys(c, S). To effect our

intuition, via system property S1, we would like a rule of the form q _Memb(p,c) =_ faultyp(q), which

would inhibit p from receiving messages from any q not in its local view. This prevents a process not

in the system view from influencing those in it.

q E (S f3 U_O(c) N Sys(c, S)). In words, q is a functional member of the system view but not a member

of the group determining the system view. As q ¢ S, its local view may contradict the system view, and

this, given our interpretation of Sys(c, S), represents an inconsistency in the system state. Our goal is to

avoid the danger of this occurring. We would, therefore, like a rule requiring q to be in S whenever it is

in Sys(c, S); (Sys(c, S)n/c"P(c)) C_ (SN/_T_(c)). It is easy to see that ($oU1_(c)) C_(Sys(c, S)ol41:'(c)).

Thus, we will require S - Sys(c, S).

2.3 Problem Description : The Group Membership Problem

We proceed to a formal definition of the Group Membership Problem (GMP) as it relates to failure detection

in asynchronous systems. This consists of defining a safe and live distributed algorithm whereby processes

may query Memb(p, c) during execution, and such that operational processes observe "l-copy" behavior on

the sequence of views so-obtained (i.e. all see the same sequence of view transitions). Because responses to

queries on Memb(p, c) will be taken as reflecting an exact system view composition, we will want to ensure

that processes see identical sequences of view transitions. Failed processes will see only a prefix of all view

transitions, but their local views when they are operational must not be permitted to diverge.

Since, in our model, logical formulas are true along consistent cuts, we omit explicit reference to particular

cuts in the formulas. For example, the logical formula q E Memb(p) is true along only those consistent cuts

c for which q EMemb(p,c). We define the proposition out(p) to hold along all consistent cuts c for which

p _Sys(e, S), and in(p) to hold when p ESys(e, S).

An algorithm solves asynchronous GMP if each of the following properties are satisfied :



GMP-0 The initial system _,iew, Sys ° , exists along the initial cut; Proc=Sys(co, Proc).

GMP-1 A process does not remove another process from its local view capriciously;

q _Memb(p) _ faultyp(q).

GMP-2 In every system run there exists a unique (denoted 3 !) sequence of system views upon

which the functional members of each view agree;

vr. 3 ! Views(r) = {(co, So),..., (ok, Sk) I (0 _ k) A (c_ << c_+1) A Svs(c_, S_) = S_}

Because the cuts are non-intersecting and unique, it makes sense to talk about the z _h version

of the system view, which we denote gys t .

GMP-3 All processes see the same sequence of local views, provided the views are defined;

Vp, q.(V0 _< x.(Memb_ = Mernb_)). This is equivalent to requiring each local view to eventually

become a system view.

GMP-4 Processes are never re-instated to local views; q ¢ Memb(p) = [::l(q _ Memb(p))

GMP-5 For each event faultyp(q), and p Egys _ , eventually either p or q is removed from the system

view; faultyp(q) ::_ (O(out(q)) V O(out(p))).

A few points are of note here. First, because our detection mechanism operates in finite time, a crash

failure will be detected by any process dependent upon the failed one. GMP-1 and property S1 isolate faulty

processes.

Second, notice that "failure detections' by "faulty' processes are finessed by these conditions. On the one

hand, property GMP-5 forces processes, and therefore the system, to react to failure detections. This, also

rules out the trivial solution. On the other hand, SI causes messages from suspected faulty processes to be

ignored (actually discarded), implying that if a process p makes a detection fa_dtyp(q) and some other process

concurrently believes p to have failed, it may be that no operational process will learn of p's detection. If

the detection was erroneous and q is operational, the event faaltyp(q) may or may not trigger q's eventual

exclusion. The outcome will depend on the pattern of communication that ensues.

Finally, observe that, as an artifact of GMP-I, there is an implied composition of the various system

views. Specifically, given c_, and q ESys _- 1 , if for no process p E Sys _- 1 does faultyp(q) hold along cx then

q must be in 5ys z . Thus, we have captured the intuitive notion that system views represent processes that

are mutually believed operational.

2.4 Difference Between GMP and Distributed Consensus

Our safety and liveness properties both define GMP as well as distinguish it from Distributed Consensus

(DC) [10]. Though it appears very similar to GMP. DC is strictly stronger.

In DC, at least one process must reach a decision on a bit value. This decision is final. Moreover, all

processes reaching decisions in a given run must choose the same value. Finally, both outcomes are possible.

ruling out the trivial solution.

Since processes are required to reach the same decision, once a process reaches a decision, all other

processes must eventually have knowledge of that decision value (else they could decide the other). This i_



exactlyHalpern and Moses's eventual knowledge [11], and, by the induction rules for eventual knowledge,

DC would attain Eventual Common Knowledge. Halpern and Moses prove that, when communication is not

guaranteed, Eventual Common Knowledge, and therefore DC, can not be attained.

GMP, on the other hand, is phrased in terms of Concurrent Knowledge, which is knowledge achieved along

a consistent cut [17]. Concurrent Knowledge is weaker that Eventual Knowledge, but, we believe, appropriate

for asynchronous systems. Moreover, GMP is not required to attain concurrent common knowledge s. The

Appendix of this paper contains a detailed epistemic analysis of GMP. Finally, GMP uses a modified notion

of correct process, allowing us to discount some processes that may not, in reality, be crashed. For these

reasons, the impossibility result does not apply to our work.

3 Solution

Our solution to GMP will make use of two channel properties, one of which is not immediate from the model.

First, we require channels to be FIFO, and second, we require that there be no messages from future views.

Both of these properties are easily implemented : the former requires a (1-bit) sequence number on each

naessage and an acknowledgement protocol; the latter involves adding view numbers to messages so that

they can be delayed when received from a process in a future view (i.e. until that view is installed locally).

3.1 The Basic Algorithm - MgrDoes Not Fail

Our solution to the Group Membership Problem isasymmetric : itinvolvesa distinctprocess,denoted

Mgr, responsibleforcoordinatingupdates to the outer processes'localviews. We use a two.phase protocol

when Mgrco-ordinates localupdates, and a three-phaseprotocol to selecta new co-ordinatorand stabilize

the system when Mgr isperceivedto have failed.To introduce the structure,we initiallyassume Mgr does

not fail.We alsomodify the localviews only by deletingprocessidentifiersfrom it.Mgr's failureand join

operationsare considered later.

In accordance with GMP-5, when a processp executesthe event faultyp(q),itsends a message toMgr, re-

questing that itstartthe removal algorithm. Every process,upon notingfaulty.(q),disconnectsitsincoming

communication channel from q,thereby satisfying$I.

Mgr initiatesthe two-phase update algorithm when itbecomes aware of a failure.In Phase I (Figure l)

Mgr broadcasts a removal invitationmessage, Exclude(q),and awaits the outer processes'responsesor noti-

ficationof theirfailure.In thisway, at the end of Phase I,allnon-faultyprocesses(from Mgr's perspective)

believefaulty(q).In Phase II,Mgr broadcastsa removal commit message, Commit(q), tellingprocessesthat

(weak) consensus on q'sfailurehas been reached and they can remove q from theirlocalviews. Processes

Mgr believesfaultywillnot participatein the update algorithms. Thus, the agreement on a new system

view becomes contingentupon the subsequent removal of theseprocesses.System property F2 ensures that

operationalouter processesbecome aware of such contingencies.Because Mgr isa singleprocess,the outer

processes'localviews at the end ofeach invocationof the two-phase algorithm are identical.

Observe that the invitationmessage, Exclude(q),isunnecessary(with respectto GMP-I) ifMgr knows the

outer processesalreadybelieveq faulty.In thisway',the contingentupdates, piggy-backed upon a commit

message, serve as an invitationfor subsequent view changes. We can thus compress successiverounds if

6GMP neednotevenattaineventual concurrentcommon knowledge,definedanalogouslytoC°.



Mgr

Phase I Phase II

 .IIIII -_

x =la.tty.(q)

Figure 1: Structure of the Two-Phase Protocol

Mgr makes known, when it issues the Phase II broadcast for the current change, how it plans to change tile

system view next.

Conventions and Notation

We use different type styles in writing different objects. Events are written in emphasized type (quitp,

faultyp(q)), and variables are in sans serif type (Mgr, Faulty(p), Chp ). Program key words are in bold face

type (begin, await), and formulas of the logic are in slanted type (up(p), [aultyp(q)).

We will also adopt conventions in the figures that follow. Process histories are represented by horizontal

rays. A solid (diagonal) ray between two process histories represents a message from the ray's source to its

sink. Dashed rays indicate messages whose existence is hypothetical, in the sense that no direct information

is available to indicate whether this message was sent. A solid line emanating from one process history and

terminating without reaching another history represents a message that cannot be received due to system

property S1. A set of nlessages grouped at the sender with an open circle represents a broadcast, as defined

below. Message contents, when necessary, will be indicated in text near the ray's source. We will al._o

indicate particular events or points of note in processes' executions as needed.

Let Mernb°=Proc, for all p and all runs. We use Memb(p) to denote p's current local view, when a cut is

clear from context.

Given send(p, q,m), let Bcast(p,G,m) be the action Vq EG.(send(p, q,m)) where G is a set of processc_.

Bcast(p.G,m) is an indivisible action in the sense that p does not execute any other events until all message._

are sent, but it is not failure-atomic.

Faulty(p) is a set of processes, local to p, which p believes faulty but has not yet removed from Memb(p!.

Chp is the set of channel id's connected to process p. The channel (p, q) is in the direction from p to q.

At startup, we assume the initial group membership, Proc, is commonly-known. We also assume that rh,,

event faultyp(q) triggers the appropriate actions regarding Faulty(p), as well as disconnecting the incomin_

channel (p, q).



Msr
Begin :

while true do

begin

await (Faulty(Mgr) # 0);

proc-id -- delete (Faulty( Mgr ));

while (proc-id# nil-id) do

begin

Bcast(Mgr ,Memb(Mgr ),Exclude(proc-id));

X.1 Vp E Memb(Mgr).(awalt (OK(p) or faultYMg r (p)));

reraoveMg r (proc-id);

Get Next( next-id ) ;

Bcast(Mgr ,Memb(Mgr ),Commit(proc-id): Contingent(next-id:Faulty(Mgr )));

proc-id .- next-id;

end ;

end ;

End.

Outer Processes

Begin :

reet_Mgr, p, Exclude(proc-id))

if p = proc-id then quilT,.

faultyr(proc-id);

X.2 repeat selld(p, Mgr,OK(p))

await (Commit(proc-id):Contingent (next-id:L));

if (p E L) or (p =next-id) then quitp.

faultyp(nexbid);

vl e L.(/a.:typ(t));
[note: fauityp(nil-id) is a null operation]

mmovep(pro¢-id);

Faulty(p) .- Faulty(p) - {proc-id};

proc-id -- next-id;

until (proc-id=nil-id);

End.

Figure 2: Exclusion Algorithm



Mgr

P

Commit(q)

\
\

Sys_

quitMgr

II

) Memb_ +1

Memb_
r

Figure 3: Inconsistent System

Remarks

This protocolcan tolerate[Memb(Mgr)l-I failures.We willsee that fault-tolerancedecreasesappreciably

when Mgrcan fail;only a minority of failurescan be toleratedbetween successivesystem views.

4 Reconfiguring - Allowing Mgrto Fail

In this section we present a reconfiguration algorithm that selects a new co-ordinator (new Mgr ) and stabilizes

the system when Mgr is perceived to fail.

If Mgr fails in the middle of an update commit broadcast no system view will exist (see Figure 3). To

re-establish the system view, our reconfiguration algorithm must address two problems : succession - which

process(es) should initiate the reconfiguration algorithm and which should assume the Mgr role at the end:

progression - which system view should a reconfiguration initiator propose to resolve inconsistencies and

maintain safety.

Intuitively, reconfiguration depends on an initiator's ability to determine the last defined system view and

propagate the correct proposal for the succeeding system view. [n our algorithm, all successful reconfigurers

(those able to reach the commit phase), undertaking reconfiguration of the zth system view, determine

identical proposals.

GMP-2 requires system views to be unique. This forces any initiator to obtain responses from a majority

of processes in its local view. An initiator can fail to obtain a majority in three ways : the initiator, itself.

may be faulty, the network may be partitioned, or a majority of processes may be faulty. In the last instance.

no algorithm can make progress Unless some recoveries occur.

GMP-3 forces us to account for invisible commits. These occur when the only processes receiving a

commit message fail. While no subsequent reconfiguration initiator will ever know whether any commil

messages were sent, if an invisible commit did occur, the system must behave in a manner consistent with

that event. This is the most difficult aspect of reconfiguration, as it is imperative that every invisibly

committed update be detectable by every successful reconfigurer. We can ensure this only if the degree of

system-wide inconsistency is tightly-enough bounded so that any initiator obtaining a majority of respons_'._

in the interrogation phase can infer the composition of local views of processes not responding to it. That

is, local views must not be permitted to diverge so far that majority subsets might not intersect r.

rThisisalsorelevanttoGMP-2, forensuringuniquesystemviewsrequiresatmostoneinitiatortobeabletoobtainresponse.

froma majorityofprocessesinitslocalview,



In our algorithm, all successful reconfigurers attempting to install s the xth system view propagate Mgr's

proposal, if they become aware of it, and if not, propose Mgr's removal. Unfortunately, asynchrony and

inopportune failures can result in there being two different proposals for the same instance of the system

view. We prove only one of them could possibly have reached the commit stage (we call such a proposal

stably.defined), and then that any reconfigurer can determine which one it is. By propagating the stably-

defned proposal, a reconfigurer forces the system to act consistently with any possible invisible commits.

Moreover, we ensure that all stably-defined proposals for the same version number are identical, further

ensuring GMP-3 as no process commits a local view for version x that differs from another process's version

4.1 Structure of the Reconfiguration Algorithm

Unlike the exclusion algorithm, the reconfiguration algorithm requires three phases. This is interesting and

important, though not surprising in light of Skeen's work on non-blocking commit protocols [20]. In the

first phase, the initiator broadcasts a reconfiguration interrogation message to all processes in its local view

and awaits their responses 9'l°. If a majority respond, the initiator determines an update event, based on

the outer processes' local states, whose execution would restore the system view. The initiator broadcasts

this event as the reconfiguration proposal message tl. After receiving another majority response, the initiator

broadcasts a reconfiguration commit message. Majority responses are essential in maintaining GMP-2 and

GMP-3; without it, the initiator must block.

4.2 Rules of Succession

We solve the succession problem by assuming a deterministic, linear ranking on process identifiers, with

Mgr the highest-ranked process t2. We say p has higher rank than q if rank(p)>rank(q). Whenever a process

is removed from a view, the ranks of all lower-ranked processes are increased by one. The rank of an excluded

process is undefined. Thus, in the x ta system view, rank(Mgr )=]5ys _ [, and rank(p)= 1 if p is lowest-ranked

process. Observe that while p and q are in the same system views, their ranking relative to each other will

not change.

A process initiates reconfiguration when it believes all those ranked higher thah itself are faulty. That

is, given cut c and Memb(p, c)

initiate(p) = A ((rank(q) > rank(p)) A faultyp(q))

qe Mere b(p, c)

While this could lead to multiple, concurrent reconfiguration initiations, it guarantees that at least one

process will begin the reconfiguration algorithm. Consider Table I in which rank(Mgr )= z, rank(p)- x - 1.

and rank(q)= z - 2, and both p and q believe Mgr to be faulty. In the third scenario, both processes initiate

reconfigurations. Section 4.3 discusses how multiple, concurrent reconfiguration attempts could affect view

Sor complete the installation of

More precisely, it awaits their responses or executes ]nutty().

t°Observe that it will be necessary to over-ride the message buffering mechanism to be able to recortfigure from a version-

inconsistent state. We therefore assume that neither interrogation nor responses nor commit messages will be buffered.

t t The proposal may be a sequence of events. Its size is a function of the current size of the system view and must guarantee

that majority subsets of Memb(r) and Memb(r)-(Proposals} intersect. Section 5 explains this necessity in more detail.

t-_ Process rank is, in fact, based on 'seniority' with respect to duration in the system view
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p actual state

Up

Failed

Up

Failed

q thinks p

Up

Up

Failed

Failed

q initiates?

No

Eventually

Yes

Yes

p initiates?

Yes

No

Yes

No

Table 1: Multiple Reconfiguration Initiations

uniqueness. In the second scenario, q expects p to initiate a reconfiguration. Eventually, q will _time-out"

on p, surmising faultyq(p), and initiate the reconfiguration.

To implement the initiation rule, each process, p, maintains a local list, HiFaulty(p) with maximum

size rank(p)-l, whose contents are the id-s of all higher-ranked processes, still members of Memb(p), that

p believes faulty. Processes in HiFautty(p) are removed from it upon their removal from Memb(p), and

HiFaulty(p)'s maximum size is decreased by one.

HiFaulty(r) : A set local to process r, of size tMemb(r)l-rank(r ), updated as follows :

1. Upon noting faultyr(q) for q of higher rank than r, q is added to HiFaulty(r).

2. Upon removing q from Memb(r), q is removed from HiFaulty(r). The size of HiFaulty(r) is decreased

by 1.

4.3 Maintaining GMP-2 : Uniqueness of the Reconfiguration View

Recall that GMP-2 requires that the system view installed by reconfiguration (and removal) be unique.

Consider the following situation, depicted in Figure 4, in which Q and R are subsets of Pro¢:

1. faultyQ(r) _ rec_q, Q,Interrogate) _ recv(q, Q,Commit(RLq):Contingent(Fautty(q)) ) for each pro-

cess q' in Q

2. faultyR(q) -- recv(r, R,Interrogate) --- recv(r, R,Commit(RLr):Contingent(Faulty(r))) for each process

r' in R.

Inconsistency may arise since no process in Q will receive r's interrogation (Figure 4) and no process in R

will receive q's. Uniqueness of the system view would eventually be violated.

To prevent this and ensure that only one process (at a time) succeeds in installing a reconfiguration view,

we require any initiator to obtain responses from a majority of processes in its local view. Let

/IMemb(r'c)lj + 1. We will write #_. when c is understood.• //r,c "-- L 2

• = + I;#= = + i.

Let PhaseIResp(r), for reconfigurationinitiatorr,be r together with the processes responding to its

interrogation,and Phase2Resp(r) be r and the processesresponding to itsproposal.Then r,beginning ill

local view Mernb_, can succeed in proposing a reconfiguration system view if and only if [PhaselResp(r)[> p_,

and can succeed in committing 13 the proposed view if and only if lPhase2Resp(r)[> #_. An initiator that is

[a To completely ensure that only one process succeeds in installing a view, we must also bound the size difference bet we,'n

two processes' local views; if not, then majorities need not intersect. We discuss this in more detail.
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Figure 4: Majority of Responses Needed

unable to obtain either majority will execute quit. An initiator can fail to obtain a majority in three ways :

tile initiator, itself, may be faulty, the network may be partitioned, or a majority of processes may be faulty.

In the last instance no algorithm can make progress unless some recoveries occur.

4.4 Maintaining GMP-3 : Propagating Committed Local Views

The content of outer processes' Phase I responses should allow the initiator to determine the nature and

composition of any version-inconsistency. While local view information suffices to detect inconsistencies

between the processes responding to an initiator, it falls short of satisfying GMP-3 entirely as invisible

commlts are not detectable.

To communicate its local view, a process responds with the sequence of remove() events it has executed.

which we denote by seq(p) for process p. To aid in detecting invisible commits, each process maintains a list

of triples, next(p), indicating how it expects to change its local view next. For example, the triple (-p_ : r : x)

means p is expecting a commit message from r, ordering pr's removal from Memb(p), and resulting in the

x 'h system view. Let ver(p)= z hold along all consistent cuts, c, for which Memb(p, c)=Memb_ and define

next(p) as follows :

• next(p) .-- (-q:Mgr :x) once p responds to recl,_Mgr, p,Invite(q)) and ver(Mgr )=vet(p)= x - 1.

• next(p) .- (-next-id:Mgr :z) once p responds to a removal commit message Commit((proc-id):(next-

id:Faulty(Mgr))) and ver(Mgr) = ver(p)= z - I. If next-id [s the nil-id, next(p) is simply (0 : Mgr : z).

• let ,V" = next(p). Then next(p) +---(AF,(? : r :?)), once p responds to recv(r,p,Interrogate).

• let (,V'.(?:r :?)) - next(p). Then next(p) *--- (-RI._ : r : x) once p responds to recv(r,p, Propose(RL,:x)).

It is not hard to see that when p receives r's proposal message, the last element of next(p) must be

(? : r :?).

• Otherwise, p is not awaiting any commit or proposal message, and next(p) is empty.
=

When ver(p)- x, the succession rule and $1 mean next(p) is the proposal of the lowest-ranked among all

processes from which p receives proposals for version z + l.
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Givena proposal, 7r = (p_ : r : x), of next(p) we use lst(_r) to obtain Pr, 2ndOr) to obtain r, and 3rd(,'r)

to obtain x.

Definition Let r be a reconfiguration initiator. Then _" = (z : p : v) is committed invisibly to r if and only

if 3q' _ PhaselResp(r).(: E seq(q'))^ Vq E PhaselResp(r).(z (_ seq(q)).

4.5 The Reconfiguration Algorithm

Note that while HiFaulty(p) is local to each process p, rank is commonly known. Consequently, other processes

can infer the contents of HiFaulty(p) in the event that p initiates a reconfiguration. The variable "invis' refers

to the frst process r will remove after successfully reconfiguring the system. ProposalsForVer(x,r) is a set,

local to reconfigurer r, of the processes that r's Phase I respondents expected to remove to obtain local

version z :

ProposalsForVer(z,r) - {z ] 3q E PhaselResp(r).(3p.((z : p: z) E next(q)))}.

GMP-2 and GMP-3 require us to prove that each reconfigurer knows exactly which of the processes in

ProposalsForVer(x,r) could have committed invisibly.

Once the reconfiguration algorithm completes, r and the outer processes can begin the exclusion algo-

rithm. If invis is defined, they can begin at the appropriate points in the compressed removal algorithm (line

X.1 for r, and line X.2 for the outer processes). Observe that Mgr must henceforth garner responses from

a majority of processes before it can commit any removals. We present the final Mgr algorithm when we

consider the join operation.

5 Correctness of the Reconfiguration Algorithm

Our goal is to show that all successful initiators (Mgror reconfigurers able to reach the commit phase)

determine identical proposals. To do this, will prove that every invisibly committed removal is detectable

by every successful reconfigurer. We first show tliat local views do not diverge so far that majorities need

not intersect 14. To do this, we quantify the possible difference between an initiator's local view and its

respondents' by showing

Vq E PhaselResp(r).(ver(r)- I <:ver(q)<:vet(r)-Jri).

We will also show that no non-faulty process receives proposals that would force it to skip a version number.

thereby guaranteeing a sort of cohesion among the responses an initiator receives to its interrogation :

max 3rd(,'r) = ver(q) + I.
,¢next(q)

Given r, a reconfiguration initiator, PhaselResp(r). a majority subset of Memb(r), q EPhaselResp(r).

and 7r = (: : p : e), an element of next(q), we next show that p cannot succeed in committing any view

numbered more than v, and that v < ver(r) + 2. In this way, any proposal that has a chance of being

committed (i.e. one whose initiator receives majority approval) will be known to all subsequent initiators

t4This is also relevant to GMP-2, for ensuring unique system views requires at most one initiator to be able to obtain respons,-q

from a majority of processes in its local view.
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Initiator, r

[note: Upon full (HiFault_(r)) Begin Phase I - Interrogation]

B cast( r ,Memb ( r ) ,Interrogate )

Vp eMemb(r), await (OK(seq(p),next(p))or [aultyr(p));

if fewer than #, OKs then quit_.

[note: Begin Phase II - Proposal];

Determine(RL,, invis, v);

Bcast(r,Memb(r),((RLr:r: v):(invis ,Faulty(r))));

Vp EMemb(r).(await (OK(p) or faultyr(p)));

if fewer than #, OKs then qui_.

[note: Begin Phase III- Commit]

remove_(RL_);

Bcast( r ,Memb( r ),Commit( Rl _ ):(invls ,Faulty(r)});

seq(r) -- (seq(r),RL,);

ver(r) _-- ver(r)+l;

begin Mgrrole by removing invis.

Outer Processes, p

rector, p, lnterrogate);

if rank(p)<rank(r) then qui_.

send(p, r, OK(seq(p),n_t(p)));

Vq EHiFaulty(r).(faultyp(q) );

next(p) -- (next(p), (? : r :?));

await (Propose((proc-id : r:vr):(next-id,F))or faulty_(r));

if faultyp(r) then exit the protocol.

if (pE F) then quitp.

send(p, r,OK(p));

Vq e F.(fanltyp(q));

next(p) -- (proe-id : r : vr);

await (Commit((proc-id : r : vr):(next-id,F')) or faultyp(r));

if faultyp(r) then exit the protocol.

R.1 if (p E F') then qnitp.

R.2 if or _- vet(p)

then remov%(proc-id);

ver(p) -- vet(p)+ 1;

seq(p) .-- (seq(p),proc-id);

next(p) -- (next-id:r : vet(p) + 1);

Vq E F'.(fauityp(q));

Mgr -- r,

Figure 5: Reconfiguration Algorithm
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[note:Determine(RLr,invis, v) : determines a reconfiguration proposal for initiator r]

Begin '

L - (l Iver(l}= v,r(,) + I};
S "- {s I ver(s) = ver(r) - 1};

ease L # * [.note: incomplete installation of version ver(L)]

begin

v _- ver(L);

D.0 RLr ,- (seq(L)-seq(r));

O.1 case iProposalsForVer(v+l)l = 0 then GetNext(invis );

D.2 IProposalsForVer(v+i)l = I then invis -- ProposalsForVer(v+l);

D.3 else invis -- GetStable(r, v);

end

L = 0 h S # 0 [note: incomplete installation of version ver(r)]

begin

v _ ver(r);

RLr -- (seq(r)-seq($));

case IProposalsForVer(v+l)l= 0then GetNext(invls);

]ProposalsForVer(v+l)l = 1 then invis *-- ProposalsForVer(v+l);

else invis -- GetStable(r,v);

end

L=S=¢

begin v *-- ver(r)+l;

D.4 case IProposalsForVer(v+l)l = 0 then RL, -- Mgr;

D.5 IProposalsForVer(v+ 1)1 = 1 then RL, -- ProposalsForVer(v+l);

D.6 else RL_ -- GetStable(r, _,);

GetNext(invis );

end

End.
i

[note'. GetStable(r, vet) : determines the one process in ProposalsForVer(ver,r)]

[note." whose removal could have been committed invisibly to r]

Begin :

Proposers, _-- {p ] 3q E PhaselResp(r), :r E ProposalsForVer(ver).((zp : p : vet) E next(q))}:

let p E Prr such that (Vp _ EProposers_.(rank(p)<rank(p')));

[note: i.e. p is the lowest-ranked process to have proposed version ver]

let 7rp such that Irp = (zp : p: vet);

GetStable *--- zr ;

End.

Figure 6: Procedures Determine(RL,, invis, v) and GetStable(r, vet) of Reconfiguration
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reaching the commit phase; we will have ensured that, until a reconfiguration completes, majority subsets

of local versions must intersect.

To show correctness with respect to GMP-2 and GMP-3 entirely, we will also need to show that in each

of tile sets of r-detectable proposals for version 2, ProposalsForVer(z,r), there is at most one process whose

removal may have been committed invisibly to r, and that r can determine which process it is. In particular

we first show

• Vr.lProposalsForVer(x,r) j _ 2, and

• (IProposalsForVer(x,r)l = 2 A JProposalsForVer(x,r')l = 2) =_

ProposalsForVer(x,r) = ProposalsForVer(z,r').

The major work is in showing that only one of the two r-detectable proposals could have been committed.

and that 1"can determine which of the two it is. From these facts a weakened version of the safety conditions

follows :

Vp, q E PhaselResp(r).(ver(p) = vet(q) ¢_, seq(p) = seq(q)) t)

In what follows, let L be the subset of PhaselResp(r) reporting the longest sequence or remove events,

and S be the subset with the shortest sequence. Let "?x" denote the invitation (if removal) or interroga-

tion/proposal (if reconfiguration) messages for the x th intended system view, Sys z , and "!x" denote the

commit message (whether removal or reconfiguration) for Sys z .

Proposition 5.1 fir is a reconfiguration initiator then

Vq E PhaselResp(r).(ver(r) - 1 _<ver(q) <_vet(r) + 1).

Proof Let ver(r)- x and p be the process responsible for r installing Memb_. While Sys _"may not be

fully defined, r has installed it locally. Suppose that some s EPhaselResp(r) has ver(s)< x - 1. Then s has

neither received nor responded to p's "?x', so p believes faultyr(s ). Upon receipt of p's commit message.

"!x', r also believes faulty_(s) and wilt receive no further messages from s.

On the other hand, suppose some ! EPhaselResp(r) responds with vet(l)> x + 1, and let p_ be responsible

for installing vet(l). Because vet(r)- z, r has neither received nor responded to p"s "?vet(I)", resulting in

faulty_,,(r), and, upon l's receipt of "!vet(i)", faultyl(r). In such a situation, l would not receive or respond

to r's interrogation. •

Definition Given process p, Sys z is p-defined (along consistent cut c) if

A (Kpver(q) > x) V (?aultyp(q)).

q_Memb(p)

(2)

That is, from the point of view of process p, Sys _ is (or has been) defined. Of course, Sys z may not be

technically defined as some process q, which p believes faulty, may have vet(q)< z and still be functioning.

With respect to a reconfiguration initiator, r, 5ys z is r-defined when every process in PhaselR_p(r) reports.

in Phase I, a version number at least as large as x. At the end of Phase I, r believes all those in PhaselResp( r}

faulty.
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Figure 7: Bounding Invisible Commits

Proposition 5.2 Let i" be a reconfiguration initiator. Then r proposes version z only i/Sys z-I is the last

r.defined system view (once r has finished Phase f).

Proof With reference to procedure Determine,

• When L # #, r proposes version number ver(L)= vet(r) + 1, and while it may also be the case that

S _: 0, it is not difficult to see that faultyL($) holds resulting in faultyr(S) at the end of Phase I and

Sys vet(r) being r-defined there.

• When L = 0 A S _: 0, Sysver(S) is the last r-defined system view and r proposes version number

ver(r)=ver(S)+l.

• When L = ,5' = 0, Sys ver(r) is the last r-defined system view and r proposes version ver(r)+l.

Proposition 5.3 No non.faulty process receives a proposal that would force it to skip a local view :

Yq E PhaselResp(r).( max 3rd(r) = ver(q) + 1).
,Enext(q)

Proof Let ver(q)= x and suppose r proposes x = (: : r : z + 2) and r E next(q). Then it is not possible

for 7" to be the same co-ordinator as the one responsible for installing Mernb_ because the FIFO channel

assumption forces q to receive "?x + 1" before "!z + i" and "!z + 1" before "?z + 2". But then ver(q)= x + 1.

So suppose r is a reconfiguration initiator. Proposition 5.2 shows that r proposes version number _"+ '2

if and only if r detects Sys TM as the last r-defined system view. This, we have already noted, means

Vp E PhaselResp(r).(ver(p) > z+l). We surmise, then, that i' did not receive q's response to its interrogation.

In this case, q E Faulty(r), and upon receipt of r's proposal executes quitq (R.I) before it updates next(q).

The cohesion of Phase I responses is important in the next proposition.

If r is successful in obtaining a majority of responses from the processes in Mernbrz, Proposition 5. I tells

us that the largest version number observed among r's respondents is z + 1; thus, VI E L.(ver(l) < x + 1_.

So suppose ver(L)= z + 1. Then every I E L has responded to "?z+ 2_. Moreover, (all) processes ill

PhaselResp(r) may also have done so. It is possible that L and PhaselResp(r) together may suffice ,,,

17



formtherequisite majority, pz+l, to commit version z + 2 (See Figure 7). Fortunately, we can bound the

divergence in the system by showing that if r has obtained responses from a majority of processes in Memb, _.

no other process can (concurrently) succeed in committing local versions numbered higher than _ + 2.

Proposition 5.4 Let r be a reconfiguration initiator and let £ C_PhaselResp(r) have the largest local version

number. Given 1 E L, let ;r = (z : p : v) E next(I). Then while p may succeed in committing the removal of

: invisibly to r. p cannot succeed in installing any view numbered greater than ver(I)+l.

Proof From Proposition 5.1 we know ver(r) < ver(l) < ver(r) + 1. Proposition 5.3 gives v _< ver(l) + [ =

ver(r) + 2. For the worst case, take v = ver(r) + 2. Then process p can succeed in committing view v + 1 if

and only if IPhaseiResp(r)- {:}] >_ /a_. Noting that Sys z =Memb,Z=(PhaselResp(r), PhaselResp(r)). that

z EPhaselResp(r), and that/a_ - I =/a_+2 for each x, then p succeeds if and only if

(] PhaselResp(r) - {:} 1>_/a_) 4¢, (I PhaselResp(r) I>_/av + 1)

¢_ (I PhaselResp(r) I>_ (/aver(r) - 1) + 1) =/aver(r).

But IPhaselResp(r)[_>/aver(r) is impossible. •

Recall the definition of the sets ProposalsForVer(z,r) :

ProposalsForVer(z,r) = {z ] 3q E PhaselResp(r).(3p.((z : p : z) E next(q)))}.

It remains to consider how r can determine which (one) of the elements in these sets could have been invisibly

committed. This is important in determining invis (when either L ¢: 0 or L = 0 ^ S _ O) and in determining

RL, (when L = S = 0).

To elucidate, suppose Sy, *-t is the last r-defined view. Intuitively, if 5ys z-I was committed with an

attendant proposal for Sys _ (i.e. the condensed algorithm applied), then ProposaisForVer(z.r)is that pro-

posal and IProposalsForVer(z,r)[= 1. However, it may be the case that, while there were no plans for future

removals when Mgr broadcast the commit message for Sys `-t , at some later time, Mgr began an exclusion

algorithm to form the z:th system view. If, during that same interval, a process had begun reconfiguration, it

is possible that it may not receive any Phase I responses indicating Mgr's plans for Sys _ . In such a case, this

reconfigurer would propose Mgr's removal for version z. A subsequent reconfigurer may then get responses

indicating both of these proposals.

We first describe the composition of ProposalsForVer(x,r), showing that every reconfigurer proposing

version z either propagates Mgr's proposal for version z or proposes Mgr's removal.

Proposition 5.5 Let r be a reconfiguration initiator proposing version z. Then,

Vz > 0.(I ProposalsForVer(z,r)IS 2).

Proof Suppose Mgr succeeded in inviting a majority of processes to install version z (that is, a majority

of Sys_-1 received _?x" from Mgr ). Let S denote the set of processes receiving =?x* from Mgr. Before any

reconflguration attempts take place, there is only one element in the general class, ProposalsForVer(z). Now.

the 'first' reconfigurer, rl, obtaining a majority of responses in Phase [is must have ]ProposalsForVer(z.rl)l= l

Is From the majority property, it is not difficult to see that "first', 'second' etc. are well-defined here.
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because PhaselResp(rL) must intersect S. From line D.S, rl propagates this. Similar reasoning tells us that

the proposal choices for the second, third, and so on, reconfigurers that complete Phase I are identical. In

this way, the only proposals made for version z propagate Mgr's proposal, and IProposaJsForVer(.c,r)[- 1 for

every r proposing version z.

So suppose the set S is not a majority of $ys x-l . Let r' be a reconfigurer for which PhaselResp(r')

is a majority, and suppose no process in PhaselResp(r') has heard of Mgr's proposal. Then r' proposes to

remove Mgr (line D.4 ). [n general, all reconfigurers not detecting Mgr's proposal (directly or by propagation)

propose to remove Mgr, and all reconfigurers detecting only Mgr's proposal propagate it. In this way, the

general class, ProposalsForVer(z), can contain two elements. The first reconfigurer to detect both these

proposals calls procedure Determine which chooses exactly one of them to propagate, thereby introducing

no further proposals. •

Corollary 5.1 Let r and r _ be reconfigurers proposing version x. Then

((I ProposalsForVer(.c,r)I= 2) A (I ProposalsForVer(z,r') J= .2)) :=_

ProposalsForVer('x,r) = ProposalsForVer(z,r').

Proof All reconfigurers either propagate Mgr's proposal for version z, which is unique, or propose Mgr's

removal. •

We now show that only one of the two proposals for a given version could possibly have been committed

(invisibly or otherwise), and that all reconfigurers can distinguish which of the two it was. This proposition

plays a crucial role in simplifying the full correctness proofs in the next section.

Proposition 5.6 Let r be a reconfiguration initiator. If [ProposalsForVer(z,r)_= 2, r can distinguish which

of the two proposals could not have been committed invisibly.

Proof Let r be the first process for which PhaselResp(r) is a majority of Memb(r) and such that

JProposalsForVer(a:,r)J=2. Let p and p' be such that (: : p : z) and (Mgr : p_ : z) are found in the responses

to r's interrogation. Without loss of generality, let rank(p)>rank(id) and consider the following cases :

1.

2,

p = Mgr. From the proof of Proposition 5.5, we know Mgr's proposal to remove z did not reach a

majority of Sys z- t , and Mgr could not have succeeded in committing z's removal.

p ¢ Mgr. Since p and id were both able to propose views, PhaselResp(p) and PhaselResp(p') must

intersect. If Phase2Resp(p) and PhaselResp(p') intersect then (z : p : ,r) is known to p' result-

ing in z E ProposalsForVer(z,id). By hypothesis, r is the first process to see both proposals, so

ProposalsForVer(z,ld)={z}. In this case p' is forced to propagate (z : p : z) (line D.5 ) and can,or

have proposed (Mgr : pl : z).

So it must be that Phase2Resp(p) and PhaselResp(p') do not intersect and r deduces that Phase2Resp(p)

could not have been a majority. It is therefore impossible for p to have committed z's removal invisibly

to r (and p').

An analogous argument applies when rank(p_)>rank(p)
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Proposition 5.6 shows that GetStable correctly chooses the only proposal for a given version number that

could have been invisibly committed.

On a side note_ if IProposalsForVer(z,r)l= I then propagating ProposaisForVer(z,r) is safe as no other

higher-ranked process can obtain the majority required to partially commit a different version x. For tile

same reasons, if lProposalsForVer(z,r)l= O, proposing Mgr's removal is also safe.

Definition A proposal is stably-defined if its initiator could possibly have reached the commit stage; that

is, given x = (." : p : z), if p = Mgr, then p obtained responses from a majority of processes in 5ys _-l , and

if p _ Mgr, then Phase2Resp(p) is a majority subset of Memb(p) and z - 1 _< ver(p) < x.

Stably-defined proposals are exactly the proposals that any reconfigurer must view as possibly committed

invisibly.

Corollary 5.2 All stably-defined proposals for the same version number are identical.

Proof Proposition 5.6 proves that any reconfigurer reaching its proposal stage knows exactly which of

the two proposals for a given version number is not stably-defined. Procedures Determine and GetStab/e

propagate the other one. If this initiator reaches its commit stage, its proposal is stably-defined and identical

to the other stably defined proposals for that version. •

Theorem 5.1 (Identical Local Views - Weak) Let r be a reconfiguration initiator. Then

Yp, q E PhaselResp(rJ.(ver(p)= ver('q) =F $eq(p) = seq(q}).

Proof The result follows from Corollary 5.2. Thus, no process commits a local view for version z that

differs from any other processes' version x since all proposals that can possibly reach the commit stage are

identical. •

Remarks

Our algorithms ensure that the state to which the system finally reconfigures _epresents the cumulafit'e

system progress. It accounts for any previous updates (and reeonfigurations) that could (and may) have

been only partially successful, and makes them stable. With respect to an interrupted commit, say of 5ys _ .

the z th system view (Sys _- l - {z}) does not exist until r succeeds in broadcasting its reconfiguration commit

messages.

To see that the new Mgris unique, consider a process, p, that has received an interrogation from r.

It disconnects its incoming channel with every process in HiFaulty(r), and therefore ceases to receive me_

sages, particularly messages relating to exclusion or reconfiguration, from processes in HiFaulty(r). Thus. p

immediately begins to believe that r is the highest ranking non-faulty process.

Finally, within certain limits, the reconfiguration proposal RL, may be more than just a single" process.

Its size is a function of the current size of the system view and must guarantee that majority subsets of

Memb(r) and Memb(r)-{RL,} intersect.

6 Correctness Proofs

Proposition 6.1 The Full Algorithm satisfies GMP-O.
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Proof Followsimmediately from the initial assumptions. •

Proposition 6.2 The Full Algorithm satisfies GMP.I.

Proof A process, p, executes removep(q) only upon receipt of one of the following :

1. Commit(q):Contingent(next-id:L) from Mgr, in which case the Remove Algorithm gives either

(a) recv(Mgr,p, Exclude(q)) ---, faultyp(q) -- rect_Mgr,p,(q):L) -- removep(q),

or, if the condensed algorithm can be applied,

(b) recv(Mgr,p,(q'):(q':L)) -- ((VI EL).faultyp(l)) -- recv(Mgr,p,(q:L')) ---* removep(q).

2. Commit(RLr:r : z):Contingent(invis:Faulty(r)) from some reconfiguration initiator, r. In this case,

observe that proposals always precede commit messages and that p executes faultyp(Rlr) upon receipt

of r's proposal, Propose(RLr:r : x).

To prove that the Full Algorithm satisfies GMP-2 and GMP-3, we rely heavily on Theorem 5.1. To prove

GMP-2, we will exhibit the cuts c_, and show uniqueness of the system view; GMP-3 is a simple corollary of

the theorem.

Theorem 6.1 The Full Algorithm satisfies GMP-2.

Proof Let rr be the process responsible for completing the installation of 5ys x-l and q be the process

removed from 5ys x- t in obtaining $ys x . Define tile cut c_ as :

recv(r_,p,Commit(q)) removep(q)- rect<rr,p, Commit(q))
c_[p] = removep(q) rect,(rr, p,Cornmit(q)) -- removep(q) (3)

quitp otherwise

It is easy to see that c_ is consistent and that c_ << c_+t. We now show $ys(c_, Memb(p, c_))=Memb(p, c_).

From GMP-0 and Proposition 6.1, Pro¢=Memb ° so Memb(p, co) = Proc, and 5ys(co, Memb(p, co)) =

Memb(p, co).

From Corollary 5.2, we know that all stably-defined proposals for the same version number are identical.

Then

Vp • SysZ-t rqH'P(cz).(Memb_ = Memb_ -t - {q})

By definition, Memb_ = Memb(p, cz) for all p, and this leaves Sys(c_:, Memb(p, cz))=Memb(p, cr).

Uniqueness of the system views follows from Corollary 5.2 and the majority requirement for any process

hoping to install a new system view. •

Theorem 6.2 The Full Algorithm salisfies GMP.3.

Proof Recall that successful initiators are those able to reach the commit phase, and that stably-defined

proposals are those issued by successful initiators. Corollary 5.2 shows that all stably-defined proposals ['or

the same version number are identical. Thus, Memb_=Memb_ for each p and q. •

Proposition 6.3 The Full Algorithm satisfies GMP.4.
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Proof Processesonlyupdatetheirlocalviewswith the set difference operation which never adds pro-

fesses. •

Proposition 6.4 The Full Algorithm satisfies GMP.5.

Proof No requests made by processes for a particular Mgr to initiate the exclusion algorithm are 'lost"

when a new Mgr is installed. An outer process's, p's, local beliefs of faultyp(q) are propagated by system

property F2 during reconfiguration. •

7 The Join Procedure

The Join procedure is a simple variation of tile Remove procedure, with restrictions regarding majorit.v

approval. Mgr initiates the join algorithm for process p when it becomes aware of p's desire to join the group.

Recall that 'recovered' processes are treated as new, and different process instances.

In the last section we saw that correctness with respect to both GMP-2 and GMP-3 hinges on majority

Memb, , for z >_ 0 and any processes r and p) intersecting.subsets of 'neighboring' views (Memb_ and r+t

When this was the case, we ensured both uniqueness of system views and complete detection of invisible

commits. Toward proving a general result, let S be an arbitrary set and define the cardinality of a majority

subset of S as p(S) -= ([[_J + 1). Then given sets S and S', the following facts underly the correctness of

our algorithms :

Fact 7.1 For all sets S, if ISI is even, then 2p(S) = ISI + 2.

Fact 7.2 For all sets S, if ISl is odd, then 2/J(S) = ISl + 1.

Fact 7.3 For all sets S and S', if Is'l=lSl+l, and #(S') = p(S) + I then IS'l is even.

Proposition 7.1 For all sets S and S', if Is'l=lSl+t, the, _(s) + > ls'l.

Proof If I_(S') = /_(S) then /J(S) + t4(S') = 2I_(S') and 2/_(S'} > Is'l by definition. Otherwise if

p(S') = p(S)+ l then Fact 7.3 tells us that IS'l is ev_,,. From Fact 7.1 we know 2p(.S") = tS'[ + 2. Therefore

_,(s) + _,(s') = 2_,(s') - 1 = IS'l + 1, giving/_(S) +/_(S') > lS'l. •
With respect to our algorithms, this means that majority subsets of neighboring views will intersect :

each invocation of our algorithm can change the existing system view by either removing or adding ezactly

one process. In this way, either

Add : Mernb_ C Membrx+t and [Mernb,_+t I = lMernb_l + 1,or

Remove: Memb: +z C Mernb_ and IMernb_l= tMernbf+_l + 1.

7.1 The Final Algorithm

For the final algorithm, we alter both the invitation and commit messages to include the desired operation,

'add' or 'remove'. For example, Invite(add(q)), and Commit(remove(p)). Similarly, next(p) and seq(p) will

prepend the relevant operation to each process identifier. The reconfiguration proposal message will also

indicate the desired operation, ver(p) will continue to reflect the instance (or ordinality) of Memb(p). Finally.

the local sets Recovered(p) are analogous to the sets Faulty(p).

Procedures Determine and GetStable are as in Section 4.5.
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Update Al$orithm- M_;r

Begin :

while true do

begin

await (Recovered(Mgr) _ 0 or Faulty(Mgr) # 0);

if Recovered(Mgr)_ 0

then proc-id -- delete (Recovered(Mgr));

op -- 'add';

else proc-id -- delete (Faulty(Mgr));

op -- 'remove';

while (proc-id_ nil-id) do

begin

Bcast(Mgt ,Memb(Mgr ),lnvite(op(proc-id)));

Vp E memb(mgr).(await (OK(p) or [ault.VMgr(P)));

if fewer than PMgr OKs then quitMg r.

if op='add'

then addMg r (proc-id);

else removeMg r (proc-id);

Get Next( next-id,next-op ) ;

ver(Mgr ) _- ver(Mgr )+1;

Contingencies -- (next-op(next-id):Faulty(Mgr):Recovered(Mgr ))i;

Bcast(mgr,Memb(Mgr ),Commit (op(proc-id)):Contingencies);

proc-id -- next-id;

op -- next-op;

end ;

end ;

End.

Figure 8: The Final Update Algorithm- Mgr
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UpdateAlgorithm- Outer Processes

Begin :

rect_ Mgr, p, Invite(op(proc-id)));

if op='add'

then operatingp(proc-id)

else faultyp(proc-id);

repeat send(p, Mgr,OK(p))

await (Commit(op(proc-id)):Cgt(next-op(next-id):F:R) or faultyp(Mgr));

if faultyp(Mgr ) then exit.

if (pE F) then quitp.

if next-op = 'add'

then operatingp(next-id)

else faultyp(next-id);

V/e F.(faultyp(f));

Vr E R.( operatin#p(r) );

if op='add'

then addp(proc-id);

else remover,(proc-id);

ver(p) -- ver(p)+l;

proc-id -- next-id;

op -- next-op;

until (proc-id=nil-id);

End.

Figure 9: The Final Update Algorithm - Outer Processes
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Reconfiguration Algorithm- Initiator, r

[note: Phase I : Upon full (HiFaulty(r))]

Beast( r,Memb( r ),Interrogate)

Vp EMemb(r). await (OK(seq(p),next(p)) or [aulty,(p));

if fewer than/z, OKs then quit_.

[note: Phase II]

Determine(RL_, invis, v);

Beast(r, Memb(r),(RLr:r : v):(invis ,Faulty(r))));

Vp EMemb(r).(await (OK(p) or faulty_(p)));

if fewer than/Jr OKs then quirt.

[note: Phase III]

if op='add'

then add_(RL,)

else remot, e,(RL,);

Beast( r,Memb( r ), Commit( RL, ):(invis ,Faulty( r ) ));

seq(r) -- (seq(r),RL,);

ver(r) -- ver(r)+l;

begin Mgr role with relevant operation on invis.

Reconfi_guration Al_;orithm - Outer Processes, p

reed<r, p,Interrogate);

if rank(r)<rank(p) then quitp.

send(p, r,OK(seq(p),next(p) ));

Vq EHiFaulty(r).(faultyp(q) );

next(p) *-- (next(p), (? : r :?));

await (Propose((op(proc-id):r : v_):(next-op(next-id),F)) or faultyp(r));

if faultyp(r) then exit the protocol.

if faulty_(p) then qui_.

send(p, r, OK(p));

Vq E F.(faultyp(q));

next(p) -- (op(proc-id):r : vr);

await (Commit((op(proc-id):r:v_):(next-op(next-id),F')) or fau/typ(,'));

if faultyp(r) then exit the protocol.

if faulty,(p) then quitp.

if v_ _ ver(p)

then if op='add'

then add_(proc-id)

else removep(proc-id);

ver(p) _-- ver(p)+t;

seq(p) .-- (seq(p),op(proc-id));

next(p) .-- (next-op(next-id):r : ver(p) + 1);

Vq E F'.(faultyp(q));

Mgr ,-- r.
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Remarks

While Mgr needs responses from a majority of processes to safeguard both GMP-2 and GMP-3 (line FA.1 )

there is a particular situation in which it is permissible to continue without a technical majority. Consider

the reasons that Mgrmay observe faultYMg r (q) while awaiting responses. It may be that q concurrently

believes Mgr faulty and is not responding, or it may be that q (or the connection between the two processes)

failed. Should Mgr 'time-out' on q, and before finishing its await stage, receive notification of q's subsequent

'recovery', Mgrcan, given certain provisos, safely interpret this as q's affirmative response. The provisos

concern the actual manner and semantics in which a process's recovery becomes known.

7.2 Complexity Analysis

Tile sequence and timing of failures affect our algorithm's performance in terms of message complexity.

We consider the 'worst' and 'best' case complexity for our protocol to install a new system view. We also

quantify the gain achievable when we can use the compressed update algorithm.

_-_ 1). Then theDefine nz - [$ys x [, and r_ to be the number of tolerable failures in 5ys z ; rz -= ([" 2 ] +

"worst case _ to install the (x + I) _t system view occurs when there are r_ successive failed (or aborted)

reconfigurations. This results in

rr 5 2 9
- l) - (y - 1))) + - l) - (y - t)) = 5..r - - = o((I • I)

y=l

messages. Fortunately, this specific composition and timing of failures occurs with very low probability.

There are three 'best case' scenarios in which a successive view can be installed : by Mgrusing the

straight-forward two-phase update algorithm, by Mgr using the compressed update algorithm, and by one

successful reconfigurer. In the first case, at most 3n_ - 5 messages are required; in the second, at most

2nz - 3; in the third, at most 5nx - 9.

Finally, if we can take advantage of the condensed algorithm (if failures are not spaced 'too far" apart).

we save substantially in message complexity. For n - 1 _uccessive failure updates, none of which are Mgr.

we require

n-I n-I

(n- 1) +'2. Z(n- x) = (n- 1) + 2n(n- 2) - 2 Z = n2 - 2n- 1 = (n- 1) _ _ n2
r----2 x=2

messages, averaging to n - 1 messages per exclusion. A standard two-phase algorithm would require an

additional _ - 1 messages per exclusion, on the average.

In all of these cases, actual failures may reduce the number of response messages and thereafter the

number in the broadcast.

7.3 Optimality Results

Our GMP protocol combines two-phase (basic update) and three-phase (reconfiguration) commit protocols.

Neither one-phase (i.e. a simple broadcast by a unique coordinator) nor two-phase protocols are sufficient for

solving GMP. This is similar to the result in [20] in which it is shown that a three-phase commit algorithm

is necessary in maintaining the consistency of a distributed database. We now give an intuitive proof of this

for GMP.

[t is not difficult to show that a one-phase algorithm cannot guarantee GMP-3.
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..... Invite(Remove(q))

Commit(Remove(q))q,

Mgr _ _ ..'r'

P

p

p,

next(Q)= (q: Mgr : l)

(? : p :?)

• Commit( Remove( Mgr ))

'Reconfigure

Figure 11: Inability to Determine Invisible Commits

Claim 7.1 A one.phase update algorithm cannot solve GMP when the coordinator can fail.

Proof Let R and S partition Proc, and let r E R, and Mgr E S. Suppose the following are process

histories : starer --faultyR(Mgr), and starts _ faultys(r). Now, r's reconfiguration commit message

(removing Mgr) can only be received by processes in R and Mgr's exclusion commit message (removing r)

can'only be received by processes in S. Then

Memb h = Proc- {Mgr } :/: Pro¢- {r} = Memb_,

violating GMP-3. •

To show that a two-phase algorithm is incapable of satisfying GMP, we exhibit a situation in which it is

impossible for a reconfigurer, knowing that only one of two proposals could possibly have been committed

invisibly, to determine which one it is. If it chooses the wrong one to propagate, GMP-3 is violated.

Claim 7.2 A two-phase reconfiguration algorithm cannot solve GMP when the coordinator can fail.

Proof Consider Figure 11 in which both r and p are reconfigurers and neither Q nor P are majorit._

subsets of Sys ° . Let next(p) be a triple indicating the process p plans to remove next, upon which other

process's command, and which local view number results. Upon completion of its Phase I, r knows that

exactly one of Mgr and p could have been successful in obtaining the requisite majority of responses, but i l

has no way of determining which, if any, of the two did.

Let PhasetResp(r) be the set of processes responding to r's Phase I reeonfiguration message (In Figure 11.

PhaselResp(r)= Q u Pu{r}). Then r can envision one case in which all of PhaselResp(r) (i.e.Q' u P')

responded to Mgr, allowing it to succeed, and another situation in which they responded to p, fulfilling ivs

majority requirement. Thus, r does not know whether to propagate Mgr's proposal or p's. If it guesses

incorrectly, it violates GMP-3. •
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8 Conclusion

We have presented a formal specification of process group membership as it relates to failure detection in

asynchronous systems. The need for formalism in this area (and others) is amply demonstrated by reviewing

the recent literature, as there are many different problems being solved, each of which claim to be 'The

Group Membership Problem'. Not surprisingly, some of these loose specifications admit trivial, and even

incorrect, solutions. We developed a solution to our Group Membership Problem, analyzing it in terms

of both process knowledge and message complexity. We used the former to show that the Fischer-Lynch-

Paterson impossibility result does not apply to this work. The latter is used to compare our solution to

solutions of similar problems. In this regard, our solution is an order of magnitude cheaper than ([15], [5]).

Our solution also improves upon others' ([6], [4]) by handling a continuous stream of failures and recoveries

(provided a majority of processes are not seen to fail during any one instance of the algorithm).

We have formally shown the solution satisfies our problem specification. Moreover, while we have shown

that a three-phase protocol is necessary for reconfiguration, we are currently investigating an optimization

to our algorithm that would allow a process, in specific circumstances, to take advantage of previous commu-

nication phases initiated by other processes. Thus, similar to the way we compressed the update algorithm,

we would pare down required communication when failures of reconfiguration initiators are continuous.

We emphasize that our particular formulation reflects our application's requirements for group member-

ship; how an asynchronous failure detection mechanism uses process groups and the meaning attached to

membership in a process group. Other applications will have different restrictions, and one could weaken

or strengthen the definition of GMP in a number of ways. For example, by not requiring processes to be

members of their own local views, we can create a hierarchical management service. The group might be a

set of clients with exclusion from it would modelling the end of that client's need for the service. Similarly,

we need not require the sets St (used in defining 5ys z ) to be unique; some applications (for example the

Deceit File System [19] and E1 Abbadi and Toueg's database consistency algorithm [1]) may wish to allow

partitions to exist and have them dealt with at a different level. Additionally, requiring every locally com-

mitted view to exist as a system view (our GMP-3) is a restriction inherited from the fact that processes

may take external actions that reflect a particular group composition.
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9 Appendix - Epistemic Analysis of GMP

GMP's specification can be phrased in terms of process knowledge. GMP-3 requires every process's local

version x to be the same as every other process's local version z. GMP-2 says that there must be some point

in every execution when the z th system view exists, resulting in a causally constrained 'consensus'. Thus,

when p commits version x it knows, eventually Mernb_ will be the x th system view. This can be phrased as

(ver(p) -- x) ::* KpC)(Sys x = Mernb_)

Define the formula [sSysView(x) to hold exactly when Sys _ is defined :

tsSysView(_)- A((,,er(p) = _) ^ (A((M,mb_ = Memb_) v down(q))) v down(p))
p q

Noting that fsSysView(x) _ Ap(ver(p) = x), and that (Ai(¢_ =_ ¢',)) _ (Ai ¢i :* Ai ¢i), along the cut

when Sys; is, in fact, defined we obtain (modulo failures)

_sSysVXew(,): A(ve,(p)= _)_ A(z,'/>(IsSysView(_)))
p p

This isnot eventualcommon knowledge [Il]ofthe existenceofSys_ Is Inessence,our specificationisphrased

loosely-enoughso that processesonly know that individualinstancesoflocalviews must be identical.The

specificationdoes not make explicitwhen the system view comes intoexistence,only that itdoes. Because a

processcan never know the composition ofZIP(c),itcan never know whether the processesin Mernb_f'_XP(c)

have updated theirlocalviews to reflect"!x" or have crashed. Notice also that GMP isnot even required

toobtain hindsightabout previoussystem views.This would be phrased as, "at some point in the future,p

knows that,at some point inthe past,the xthsystem view e×isted_ :

(ver(p) = z) _ OKp<_(Mernb_ = Sysx )

though in our protocol, this may be achieved. Up_)n receipt of the x th commit message, "!z', p can reason

about the past. It knows that other processes, also in Memb(p) and still functioning, received and responded

to the z t^ invitation, _?a:". Because channels are FIFO, p also knows these processes received "!z - 1". That

is, when p receives _!x", p knows Sys x-I was a defined system view :

(vet(p) = a:) ::_ Kp_lsSysView(z - 1) (4)

Equation 4 holds along any consistent cut containing p's receipt of _!x ". Notice, though, that it is only' the

existence of successive views that give a process deeper knowledge of past views.

Since IsSysView(x) =_ Ap ver(p) = x, we obtain

(_,r(p) = =) _ K._>A(_e_(q) = =- 1) _ K_o /_ h'v<>IsSysView(x - 2) ¢_ Kp*E,_tsSysView(x - '2)
q q

Conjoining over all processes, p, when Sy$= is defined (along c_) we obtain

fsSysView(x) _ A(ver(p) = r) =_ A Kp_( E_lsSvsView(_: - 2)) _, E_(E_IsSysVie,_(z - 2))
p P

16 Eventual common knowledge would be Ap <>KplsS,vsView(x}.
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That is, processes only have knowledge about each others' local views after the fact. Unwinding the above

equations gives the general result

IsSys View( x ) _ ( E <_)Y( IsSys View( z - Y) ).

When we assume Mgr does not fail, we obtain a higher level of consensus than our specification requires.

When p receives "!x', it knows that there is some consistent cut that includes its current, local state (i.e.

p does not take any further steps) along which every other functional process in the group will also receive

"!x _. That is, p knows that it is 'sitting on' a particular consistent cut, but doesn't know whether the other

processes have reached it yet. This is precisely formulated by the concurrency operator, Pp [17], whose

formal semantics are beyond the scope of this paper. This operator is exactly what differentiates concurrent

knowledge from other epistemic formulations (for example [11]).

Then the above statements give

(vet(p) = ._)=_KpG(lsSysYie_v(z)).

Finally, letting _¢ = 5ys t t'_'P(c), the following holds along any cut where 5ys z is defined :

IsSysView(x) ::_ ( A (ver(p) - x)) ::_ A (KpPpIsSysView(x)) =_
pE_ pete

C
( [sSys View( x ) =:, Eqo ( [sSys View( x ) ) ) (5)

Equation 5 is the induction rule for concurrent common knowledge; thus, the composition and existence

of tile x th system view are concurrent common knowledge. Alternatively, in the terminology of [21], c_ is a

locally-distinguishable consistent cut, also sufficient for concurrent common knowledge.

This is not the case when Mgrcan fail. When p receives "!x', from either Mgror a reconfigurer, it does

not know whether the broadcaster failed before completing the broadcast. If so, then p will have to be part

of a (further) reconfiguration attempt. The GMP specification only guarantees p that eventually Sys _r will

be defined :

((ver(p) = x) ::_ Kt,_,([sSysView(x))) ::_

((_er(p) = _) _ G<>( A (_er(q) = _))) =
qE_¢

(ver(p) -- x) ::_ It't,<) ( A (Kq<)( A (ver(q') = x))))...
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